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ABSTRACT.—Open population models using capture-mark-recapture (CMR) data have a wide range of uses

in ecological and evolutionary contexts, including modeling of stopover duration by migratory passerines. In

using CMRapproaches in novel contexts there is a need to determine the conditions under which open population

models may be employed effectively. Our goal was to determine whether there was a simple a priori mechanism

of determining the conditions under which CMRmodels could be used effectively in the study of avian stopover

ecology. Using banding data (n = 188 capture histories), we examined the challenges of using CMR-based
models due to parameter inestimability, adequacy of descriptive power (Goodness-of-Fit, GOF), and parameter

uncertainty. These issues become more apparent in studies with limited observations in a capture history, as is

often the case in studies of avian stopover duration. Limited sample size and sampling intensity require an

approach to reducing the number of fitted parameters in the model. Parameter estimability posed the greatest

restriction on the utility of open population models, with high parameter uncertainty posing a lesser challenge.

Results from our study also indicate the need for >10 observations per estimated parameter (approximately 3

birds captured or recaptured per day) to provide a reasonable chance of successfully estimating all model

parameters. Received 13 July 2005, accepted 20 May 2006.

Migratory birds frequently use stopovers to

complete migration successfully between their

breeding and wintering grounds. Stopover

sites provide refuge from predators, protection

against inclement weather, and food resources

to allow fat deposition to fuel migratory flight.

It is thought that many migrating passerines

cannot store enough fat to complete their mi-

gration in a single transit, but must refuel by
foraging at stopover sites along their routes

(Dunn 2001, Schwilch and Jenni 2001). Pro-

viding evidence for the use of stopover sites

for refueling, Moore and Abom (2000) doc-

umented increased activity patterns and dif-

ferential habitat use by lean versus fat mi-

grants. Lean migrants needing to refuel may
stay longer at stopover sites than fat migrants

(Moore and Kerlinger 1987, Yong and Moore
1997), and the rate of mass gain also may af-

fect stopover duration. The length of time that

migrants stay at stopover sites will affect the

total duration of migration and may affect the

ability of birds to obtain quality territories.
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Species-specific stopover patterns may reflect

both intrinsic characteristics and ecological

factors associated with individual stopover

sites (Kaiser 1999). Schaub et al. (2001) argue

for accurate estimates of stopover duration to

test models of optimal migration strategy, spe-

cifically the trade-off between time spent in

flight or at stopovers.

Although the importance of en route mi-

gratory stopover sites is well recognized

(Moore 2000, Petit 2000, Sillett and Holmes

2002, Heglund and Skagen 2005), all sites are

not equal. Mehlman et al. (2005) recommend
that important stopover sites be identified

based on the relative migrant abundance, the

availability of resources that allow birds to re-

plenish fat reserves, and the location of the

site relative to other sites and ecological bar-

riers. However, specific criteria for assessing,

and statistical approaches for comparing, sites

have not been established. Furthermore, there

is a recognized need for research on how sites

differ by season, species, and species demog-

raphy (Mehlman et al. 2005, Partners in Flight

Research Working Group 2002).

Since the mid-1980s, numerous researchers

have described the basics of the stopover ecol-

ogy of migratory landbirds at individual sites

along the northern coast of the Gulf of Mexico
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(Moore and Kerlinger 1987, Moore et al.

1990, Kuenzi et al. 1991), the New England

coast (Morris et al. 1994, 1996; Parrish 2000),

the Great Lakes coasts (Jones et al. 2002,

Bonter 2003), and in western states (Winker

et al. 1992, Finch and Yong 2000). Most of

these studies provide simple analyses of stop-

over duration based on recapturing banded

birds. Calculating the amount of time lapsing

between the first capture and the last recapture

(Cherry 1982) has been the traditional method
of estimating stopover duration at a given site;

however, including only recaptured birds pro-

vides conservative estimates of stopover du-

ration because birds not recaptured have not

necessarily left the field site. If only recap-

tured birds are used in analyses (regularly

<5% of all banded migrants are recaptured),

this simple approach might provide a biased

view of site use because >95% of migrants

are excluded from analyses.

The limitations of the minimum stopover

approach have resulted in the suggestion that

open population models based on capture-

mark-recapture (CMR) data be used to esti-

mate stopover duration (Lavee et al. 1991,

Holmgren et al. 1993, Kaiser 1995, Schaub et

al. 2001). The Pradel (1996) extension of the

Cormack-Jolly-Seber (CJS) models allows for

a range of models of the probabilities of ani-

mal capture, arrival, and departure within each

interval of a given study period. A number of

useful statistics may be derived from the sto-

chastic models, including mean time animals

are present in the study area, mean capture

probability, and temporal patterns of arrival,

departure, and population size. These models

also could allow meaningful comparisons of

several stopover characteristics among sites.

Although the assumptions used in deriving

open population models are widely known
(e.g., Pollock et al. 1990, Cooch and White

2005), the conditions under which these mod-
els can be used are rarely discussed. Charac-

teristics of the data (i.e., capture/recapture his-

tories) —especially sample size, number of

temporal sampling intervals available, recap-

ture/resighting/recovery rate, etc. —may great-

ly impact the potential usefulness of these

models. To use a given open population mod-
el, first all the model parameters must be es-

timated. Typically, parameter estimates are

obtained using numerical maximum likeli-

hood methods; characteristics of the capture

history and the model’s mathematical struc-

ture will determine the number of parameters

that can be reliably estimated. Parameters that

are inestimable due to limitations of a given

capture history are extrinsically non-identifi-

able (McCullagh and Nelder 1989, Viallefont

et al. 1998). Capture histories that involve

long periods of time, particularly those with

relatively few captures and/or recaptures, of-

ten prevent successful estimation of all param-

eter values; the resulting extrinsic non-identi-

fiability of parameters either precludes the use

of open population models or requires reduc-

ing the number of parameters.

One approach to reducing the number of

parameters that must be fitted for a given

model is to pool observations over several

consecutive observation periods (e.g., Schaub

and Jenni 2001, Schaub et al. 2001). However,

pooling may bias the parameter estimates and

preclude comparing models with different

pooling intervals (Hargrove and Borland

1994, Morris et al. 2005b). The difficulty as-

sociated with the need to establish this basic

temporal interval has been recognized in the

paleontological literature (Connolly and Mil-

ler 2001, Xu et al. 2005), where it has been

addressed by determining whether or not anal-

ysis results remain consistent as the pooling

interval is changed. Additional detailed dis-

cussion of pooling and its effects appears to

be lacking in both the statistical and ecologi-

cal literature. An alternative to pooling is to

use multiple-day constancy (MDC; Fig. 1),

which holds parameter values fixed over a

given “constancy” interval, thus reducing the

number of parameters while retaining all in-

formation in the capture history (Morris et al.

2005a). Regardless of the method used to re-

duce the number of parameters, decreasing the

number of parameters in a model will increase

the likelihood that all parameters can be suc-

cessfully estimated, by reducing the incidence

of extrinsic non-identifiability.

When using open population models, good-

ness-of-fit (GOF) tests must be applied to de-

termine whether the models have adequate de-

scriptive power prior to biological applica-

tions. Two distinct approaches (analytical tests

based on contingency tables and numerical

tests based on comparing observed model

misfit or deviance to estimates of misfit de-
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FIG. 1 . Open population models may be used to estimate stopover duration by migratory birds by estimating

daily rates of capture, arrival, and departure. Large numbers of parameters are required to work with (A) raw

data, while both (B) pooled data (3-day pooling interval) and (C) multiple-day constancy (MDC, 3-day MDC
interval) provide a reduction in the number of parameters in the open population models fitted to bird banding

data. Since limited sample sizes make parameter estimation difficult, some reduction in the number of parameters

may allow use of these models with smaller data sets. Both pooling and MDCapproaches reduce the number
of fitted parameters: p = probability of capture; 4> = probability that a bird captured on one day remained until

the following day (i.e., survival); and y = probability that a bird captured on one day was there the day before

(i.e., seniority). Pooling, however, loses information from multiple captures in the same interval, whereas MDC
retains information on all captures. Figure adapted from Morris et al. (2005a).
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rived from simulations) have been used to de-

termine whether open population models fit

the data. Once the most complex model passes

the GOFtest, selection of the most appropri-

ate model (of those nested within this most

complex model) for the data using Akaike’s

Information Criterion (AIC) can occur. Even
when models can be chosen and fit, the vari-

ances of parameter estimates obtained from

open population models may be too large for

the estimates to be useful. The coefficient of

variation (CV; the standard deviation of the

estimate/the value of the estimate X 100) may
be used to assess the potential utility of stop-

over estimates. A low CV is necessary for ef-

fective comparison of statistical measures

among species, locations, and/or time periods.

However, little attention has been paid to the

dependence of the CV on the characteristics

of the capture history.

In this study, we examined capture histories

from migration banding data to determine the

utility of open population models for estimating

avian stopover duration. Weused a large num-
ber of field capture histories ( n = 188) from

migration banding datasets rather than relying

on computer simulations. Whereas computer

simulations would provide greater control over

parameters, we wanted to be sure to cover a

wide range of natural conditions represented by

empirical data. Specifically, we were interested

in determining how data characteristics affect

parameter estimability (through extrinsic non-

identifiability), the ability of models to pass

GOFtests, and the CV of stopover duration es-

timates. Estimating the range of sample sizes

and recapture rates to which open population

models can be fitted may help us determine

whether these approaches are appropriate for a

particular capture history. To that end, our re-

sults indicate the conditions under which open

population models can be used effectively with

banding data.

METHODS
Data collection . —Migrating birds were

captured in mist nets at Appledore Island,

Maine (1996-2002); Star Island, New Hamp-
shire (1999 and 2000); and Hamlin Beach

State Park, near Rochester, New York (1999

and 2000). Mist nets were operated daily dur-

ing the spring and fall migration seasons ex-

cept during inclement weather. All birds cap-

tured or recaptured were transported to a cen-

tral location for banding and data collection.

For species with a sample size >50 indi-

viduals in a single season, we created a cap-

ture history that indicated whether any one in-

dividual was captured on a given day. Using

this capture history, we calculated minimum
stopover by subtracting the date of first cap-

ture from the date of final capture, following

Cherry (1982). Additionally, we calculated a

variety of descriptive statistics that were used

for discriminant function analyses (see be-

low).

Capture-mark-recapture . —The first step in

the analysis was to determine the most com-
plex model for which all parameters could be

estimated. Numerical maximum likelihood

methods were used to fit Pradel’s (1996) ex-

tension of the CJS open population models to

each capture history. Pradel’s model requires

estimation of sighting (p = probability of cap-

ture), seniority (y = probability that the bird

was present at a stopover site during the pre-

vious day), and survival (4> = probability of

remaining at a stopover site until the next

day). We considered time-dependent open

population models with MDCintervals (Mor-

ris et al. 2005a) ranging from 1 to 7 days. In

the MDCapproach to time-varying parame-

ters, the parameters are fixed over the MDC
interval. However, all captures and recaptures

within and between MDCintervals have an

influence on the likelihood function and,

hence, the parameter estimates. Each of these

time-dependent models (in which sighting,

survival, and seniority probabilities were all

free to vary from one constancy interval to

the next) was fitted to the capture history, and

the number of extrinsically non-identifiable

parameters was identified using an estimate of

the rank of the Hessian matrix (Viallefont et

al. 1998). Rank deficiency in the Hessian ma-

trix was estimated by using finite-difference

methods, and then tested using the singular

value decomposition method (Viallefont et al.

1998). Rank deficiency was taken as indicat-

ing extrinsic parameter non-identifiability in a

model. While some parameters in Pradel’s ex-

tension of the CJS model are non-identifiable

due the model’s structure (i.e., intrinsic ines-

timability), this form of inestimability is part

of the model, and does not negatively impact

its further use. We are concerned here with
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extrinsically inestimable parameters in band-

ing data. Inestimability makes it difficult to

use either the Schaub et al. (2001) formulation

of the stopover duration or the more recent

estimate put forward by Efford (2005). Al-

though Efford’s approach appears simpler

than that of Schaub et al. (2001), it still re-

quires an estimate of the distribution of arrival

times, thus necessitating the estimation of the

same number of parameters (See Efford’s

equation 5 and discussion). To be useful in

estimating stopover duration (Schaub and Jen-

ni 2001, Schaub et al. 2001), all intrinsically

estimable parameters in a model had to be

completely identifiable, so those capture his-

tories with non-identifiable parameters due to

the structure of the data in all MDCintervals

tested were judged unusable for further analysis.

Weused software written by HDSand DAL
using MATLAB(The Math Works, Inc. 1992)

to implement Pradel’s population growth rate

(PGR) method (Pradel 1996). We compared
the performance of our software to that of

MARK(White and Burnham 1999, Cooch
and White 2005) and SURGE(Lebreton et al.

1992, Pradel and Lebreton 1993, Cooch et al.

1997); it produced identical results for a num-
ber of capture histories, both from our data

and from example files distributed with

MARK. When using very sparse data, our

software and SURGEhad similar convergence

properties, with results depending less on

sample size than they did in MARK, which

may be attributable to differences in the par-

ticular link function (the default choice) we
used in MARK(Cooch and White 2005); this

particular difference in performance was not

investigated in depth.

Since capture histories included a range of

sample sizes and durations, comparing capture

histories required a time-invariant measure of

sampling intensity. Weused the number of ob-

servations (sum of all capture and recapture

events) per estimated parameter in a 7-day,

time-dependent MDCmodel as the measure

of observations per parameter. The 7-day

MDCmodel had the lowest number of param-

eters of any model used in the estimability

determination procedure discussed above. We
divided the capture histories into three cate-

gories, based on the number of observations

(#) per estimated parameter: (1)2<#<5,
(2) 5 < # < 10, and (3) # > 10. Our highest

category (>10 observations per parameter)

roughly corresponds with three birds of that

species captured or recaptured per day. This

categorization allowed us to examine the de-

pendence of estimability on the ratio of ob-

servations to parameters, and does not require

that the sampling intervals used in a study be

in units of days.

Capture histories were tested for GOFby

assessing the ability of time-dependent (i.e.,

the most complex) models to fit the data. Both

analytical tests (based on contingency tables)

and numerical tests (based on parametric

bootstrap procedures) have been used in con-

junction with CMRmodels. The first approach

is to use contingency tables to test whether

assumptions of the open population models

are violated. Specifically, contingency tables

are used to test the assumptions that each

marked animal in the population at time t has

(1) the same probability of recapture, and (2)

the same probability of survival (Pollock et

al. 1990). Several variations on these tests

have been incorporated into the programs RE-
LEASE (Lebreton et al. 1992, Burnham et al.

1987), MARK(White and Burnham 1999),

and U-CARE (Choquet et al. 2005). The con-

tingency tables can be pooled to produce an

overall chi-square statistic for the capture his-

tory as a whole, as well as testing specific

hypotheses about violations of model assump-

tions. When faced with sparse data, the con-

tingency tables may be pooled to improve

their performance, particularly when the num-
ber of expected outcomes in one or more cat-

egories of the contingency table is very low.

Pooling contingency tables, however, does not

always result in tables with enough entries in

each cell to be useful. All of our capture his-

tories that had estimable models for MDCin-

tervals of <7 days were submitted to GOF
testing using the contingency table methods in

U-CARE (Choquet et al. 2005).

The second alternative is to use numerical

simulations to determine whether the ob-

served model deviance is consistent with the

deviance distribution obtained by using the

model in a parametric bootstrap procedure

(also called a Monte Carlo simulation). The
model deviance is the difference between the

observed log-likelihood and the log-likelihood

for a “saturated” model, and it serves as a

model’s measure of fit. In such a procedure
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(as implemented in MARKand our software),

the model is used to generate a series of sim-

ulated capture histories of the same size as the

original capture history. The model is fit to

each of the simulated capture histories in turn,

and a confidence interval for the deviances

observed over the simulated data is obtained.

If the observed deviance is high (above the

95% upper bound of the simulation devianc-

es), then it may be possible to continue the

analysis by computing an estimated variance

inflation factor (c) and using this to adjust the

statistics of model choice (White 2002, Cooch
and White 2005). Data sparseness also affects

this parametric bootstrap approach to GOF
testing because the model must be fit to the

simulation data during the estimation of the

range of deviances. Each capture history was
tested for GOF at the lowest MDCinterval

for which the model parameters were identi-

fiable, using software written by HDS and

DAL. Parameter identifiability was monitored

during the GOF testing procedure, as it also

poses a problem when conducting Monte Car-

lo simulations. Similarly, capture histories ex-

hibiting evidence of a lack-of-fit (i.e., those

with deviances outside the 95% confidence in-

tervals from the simulations) over all seven

intervals were not subjected to further analy-

sis. We did not make use of the c estimation

procedure (White 2002, Cooch and White

2005), as it turned out that only two capture

histories fell into this category of results.

After a time-dependent model was shown
to exhibit GOF, we compared competing mod-
els to determine which model was optimal for

producing stopover estimates. Model selection

compared all prospective models over several

MDCintervals for each capture history, be-

ginning with the smallest MDCinterval that

passed GOF. Weexcluded prospective models

that had both constant seniority and survival

because they predict a population size that is

constant or monotonically increasing or de-

creasing. Based on field observations, we
know that during the migration period the

population present at a stopover site increases

to a maximum value and then declines to zero,

making any model predicting constant popu-

lation size or a monotonic pattern of change

in population size biologically unreasonable

(see Burnham and Anderson 1998 for a dis-

cussion of the exclusion of biologically un-

reasonable models). The lowest AIC c value in-

dicated the most appropriate model for a given

capture history, thus determining the appro-

priate MDCinterval and whether each param-

eter was constant or time-dependent. In addi-

tion to determining which model was the most
appropriate, the AIC c score was used to assign

a relative AIC c weight (w) to each model,

which reflects the relative probability that

each model is correct. If the AIC c weight of

the chosen model was <0.95, we also includ-

ed additional models with relatively high AIC c

weights. Thus, the number of models included

was determined by a cumulative AIC c weight

of 0.95, so that all models with a reasonable

chance of being correct were considered. We
used a bootstrapping procedure to determine

the total stopover duration estimate and the

standard deviation of this estimate (following

Schaub et al. 2001).

Schaub et al. (2001) present a derivation of

the expected total stopover duration calculated

as a daily value; we report the average total

stopover duration over the migration season.

In our method, the daily stopover is weighted

by the estimated probability of arrival times,

using the estimated population growth rate as

presented by Pradel (1996). Efford (2005) ar-

gues that the total stopover duration (Schaub

et al. 2001) produces an overestimate of the

actual duration. Efford (2005) advocates using

a weighted average of Schaub et al.’s “stop-

over-after” estimate using a weighting derived

from Schwarz and Arnason’s (1996) estimates

of the distribution of arrival times (Equation

5 in Efford 2005). We also present the stop-

over-after statistic, again weighted using the

estimated population growth rate as derived

from Pradel (1996). Conceptually, this ap-

proach is the same as that presented by Efford,

although the computations may differ slightly,

as the Pradel (1996) parameterization of the

problem differs from that used by Schwarz

and Amason (1996).

In addition to having adequate descriptive

power and being estimable, the chosen model

must yield a useful statistic for comparisons.

The coefficient of variation (CV) was used to

determine usefulness of the total stopover sta-

tistic estimated for each species in each sea-

son. CV was calculated by dividing the stan-

dard error of the total stopover estimate by its

mean and multiplying by 100. In this study.
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TABLE 1. Summary of the utility of open opulation models in three categories representing the number of

observations (#) per estimated parameter for a given capture history from avian banding data. To be applicable,

models had to have estimable parameters and pass goodness-of-fit (GOF) testing. As the number of observations

per parameter increased, the number of capture histories that could be analyzed using open population models

also increased. Parameter inestimability in both model fitting and GOFtesting poses the greatest impediment to

the use of open population models at these sample sizes. Bird banding data were collected during spring and

fall migration on Appledore Island, Maine (1996-2002); Star Island, New Hampshire (1999-2000); and Hamlin

Beach State Park, New York (1999-2000). The banding data were used to create capture histories, which indicate

whether and individual bird was captured on a particular day; a separate capture history was created for each

bird species for which there were >50 captures at a single location during a specific season.

No. observations per estimated parameter

Capture histories that:

2 < # < 5

(n = 42)

5 < # < 10

(« = 81) <10 (n = 65)

Had inestimable parameters 24 (57%) 29 (36%) 16 (25%)
Were inestimable in simulation GOF 15 (36%) 30 (37%) 6 (9%)

Failed simulation GOF 0 (0%) 0 (0%) 2 (3%)

Failed U-CARE “transients" test 0 (0%) 1 (1%) 4 (6%)

Had an applicable model 3 (7%) 21 (26%) 37 (57%)
Had a CV <50% in total stopover duration 3

1 (2%) 7 (9%) 15 (23%)
Had a CV >50% in total stopover duration 3 2 (5%) 14 (17%) 22 (34%)
Had a CV <50% in stopover-after b

1 (2%) 9 (11%) 18 (28%)
Had a CV >50% in stopover-after b 2 (5%) 12 (15%) 19 (29%)

3 Total stopover estimates are based on open population models and estimates from stopover duration analysis (SODA) described in Schaub et al. (2001);

CV (coefficient of variation) = (SE/mean) X 100.

b Stopover-after estimates are based on open population models and estimates using equation 5 from Efford (2005).

only CV values <50% were considered useful

because comparing different stopover esti-

mates is impossible when CV values are sub-

stantially >50%. CV values could, of course,

be determined for any estimated parameters in

the model; we focus here on the derived sta-

tistic (stopover duration) relevant to the study

of migration ecology.

Discriminant function analyses . —We used

discriminant function analyses to examine
which conditions led to estimability of param-

eters in the original capture history and during

GOFtesting. Weused a range of simple sta-

tistics that could be calculated without em-
ploying the complex CMRmodels. The vari-

ables included in these analyses were the

number of individuals captured, number of

days sampled, percent of individuals recap-

tured at least once, total number of captures

and recaptures, total number of recaptures,

number of captures per day, median captures

per day, recaptures per day, number of days

with no captures or recaptures, minimum stop-

over estimate, standard deviation of the min-

imum stopover estimate, standard deviation in

the number of captures per day, and several

measures of capture consistency, which we
term “completeness.” Completeness is the

percentage of days on which there was >1
capture event, while “completeness two” re-

fers to the percentage of days with >2 capture

events. “Recapture completeness” and “re-

capture completeness two” refer to the per-

centage of days with >1 or >2 recaptures,

respectively. Backwards stepwise discriminant

analyses were performed in SYSTAT 10.2

(SYSTAT Software, Inc. 2002).

RESULTS

Weexamined the parameter estimability of

1- to 7-day MDCmodels applied to 188 cap-

ture histories representing 34 different species

(97 capture histories from fall and 91 from

spring migration). Of these, we were able to

obtain estimable parameters of a completely

time-dependent MDCmodel for 119 capture

histories. The MDCinterval at which models

could be estimated varied among capture his-

tories. The shortest interval that could be used

ranged from 3 to 7 days (3 -day n = 15, 4-day

n = 22, 5-day n = 40, 6-day n — 21, 7-day

n = 21). Parameter estimability was strongly

dependent on the number of observations per

parameter (Table 1). Estimability also played

a large role in the outcome of GOF testing.

Relatively few capture histories failed GOF
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testing in an absolute sense. Five capture his-

tories showed evidence of differences in cap-

ture probabilities of previously recaptured in-

dividuals relative to new captures (the tran-

sience test) in U-CARE. and two had excess

deviance in the parametric bootstrap test (sim-

ulation GOF). The remaining capture histories

that “failed" GOFdid so because of param-

eter inestimability in the bootstrap procedure.

In these instances, the models could not be fit

reliably to the simulated data (i.e.. there were

problems with estimability in >10% of the

simulated capture histories). The ability of

models to satisfy the GOFcriteria was sub-

stantially greater for capture histories in our

highest category (>10 observations per pa-

rameter) than in those in the other two cate-

gories (2 < # < 5 and 5 < # < 10 observa-

tions per parameter; Table 1). Data sparseness

also affected the contingency tests imple-

mented in U-CARE; 42% ( n — 119) of the

capture histories with estimable parameters

produced useful contingency tables, although

the percentage varied among our three cate-

gories (2 < # < 5: 0%, n = 18; 5 < # ^ 10;

38%, n = 52; >10: 61%, n = 49).

A discriminant function analysis of all cap-

ture histories with >10 observations per pa-

rameter produced a moderately effective, sta-

tistically significant discriminant function de-

scribing parameter estimability (Wilks' A.
=

0.53, F559 = 10.41. P < 0.001) with positive

loadings on duration, recapture completeness,

and median captures per day. There were neg-

ative loadings on number of recaptured birds

and minimum stopover. To extract biological

information from discriminant function load-

ings. we examined a range of bivariate plots

depicting the various loadings. The plots

yielded only one clear biological interpreta-

tion: capture histories with high minimum
stopover duration often had inestimable pa-

rameters (Fig. 2). Parameter estimability dur-

ing GOFtesting limited the number of capture

histories that could be analyzed; however, a

discriminant function analysis to predict pa-

rameter estimability during GOFtesting of the

49 capture histories that were estimable and

had >10 observations per parameter was not

significant (Wilks' A = 0.83, F4 44 = 2.20, P
= 0.085).

Optimal models for the capture histories that

passed GOFtesting varied in the incorporation

of time-dependent parameters and in the MDC
interval used in the models. When the AIC c

was used to compare the estimable candidate

models, regardless of the number of observa-

tions per parameter. 88 viable models were

identified for the 61 capture histories. The total

number of models exceeded the number of

capture histories, as multiple models were con-

sidered for some capture histories. For 46 of

the 61 capture histories, a single model had an

overwhelming AIC
t

. weight (>0.95). indicating

that a unique model was identified. Two alter-

native models were identified for seven capture

histories, three alternative models were identi-

fied for six capture histories, and four and six

models were identified for one capture history

each. Parameters that were time-dependent also

varied among the chosen models. All three pa-

rameters were time-dependent in 14 capture

histories, two parameters were time-dependent

in 38 capture histories (p and 6: 15; p and y:

17; d> and y: 6), and a single parameter was
time-dependent in 36 capture histories (p : 0; <b:

13; y: 23). The MDCtime interval chosen for

all 61 capture histories varied from 3 to 7 days

(3-day n = 5; 4-day n = 2; 5-day n = 18; 6-

day n — 19; 7-day n = 44). Although 52% of

our original capture histories were collected

during the fall. 75% of the capture histories

with applicable models were collected during

the fall.

Estimated total stopover duration values

ranged from 0.76 to 17.08 days (Table 2). and

the CV values were highly variable (ranging

from 13% to 274%). Of the 61 capture his-

tories that were useable after GOFtesting. 23

had a total stopover CV of <50% (Table 1).

Stopover-after estimates ranged from 0.38 to

10.13 days, which were shorter than the esti-

mates of total stopover. Despite the difference

in stopover duration estimates obtained by es-

timating total stopover and stopover-after,

stopover-after had a slightly wider range of

CV values than total stopover. CV values for

stopover-after ranged from 13% to 365%.

Most of the estimates involving CV values of

<50% were capture histories from the fall mi-

gration season (18 of the 23 estimates for total

stopover and 24 of 28 estimates for stopover-

after), approximately mirroring the distribu-

tion of spring and fall capture histories (75%
of estimable capture histories were collected

during the fall). These useful estimates were
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FIG. 2. The relationship between parameter estim-

ability, minimum stopover duration (days), and sample

size. Among capture histories of landbird species at

migratory stopover sites that had 10 or more (by spe-

cies) capture events per estimated parameter, those

with high minimum stopover duration often had ines-

timable parameters.

obtained for a variety of species including two

vireos, Red-breasted Nuthatch ( Sitta canaden-

sis ), two kinglets, two thrushes. Gray Catbird

(Dumetella carolinensis ), many warbler spe-

cies, and White-throated Sparrow {Zonotri-

chia leucophrys
;

Table 2).

DISCUSSION

Our study provided some insights about the

conditions under which CMRmodels can be

effectively used to estimate migratory-stop-

over duration. Dividing the data into three cat-

egories based on the number of observations

per parameter revealed the importance of the

observation: parameter ratio in predicting the

utility of CMRmodels. Models with >10 ob-

servations per parameter were estimable and

—62%satisfied GOFtesting; most “failures”

to satisfy GOFwere due to the difficulty of

estimating parameters during the GOFproce-

dure when using simulations. If our banding

data are representative, then the presence of

>10 observations per parameter (roughly

three birds captured or recaptured per day)

may connote a reasonable probability that

CMRmodels will be useful for characterizing

a given capture history.

Although we present analyses based on to-

tal number of observations (summed capture

and recapture events) per parameter, we also

conducted similar analyses using number of

individual birds banded per parameter, yield-

ing similar results. The capture histories were

also divided into different categories based

only on total sample size (50 < n < 100, 100

< « < 150, and n > 150). The division by

sample size alone was not effective, because

sample size is a product of both sampling du-

ration and sampling intensity.

Extrinsic parameter inestimability proved to

be the largest impediment to using open pop-

ulation models in our study, affecting both the

initial model fitting and GOFtesting. The dis-

criminant function analysis revealed that a

long minimum stopover (>4 days) was a good
indicator that the parameters would not be es-

timable. Because most birds that are recap-

tured at stopover sites have minimum stop-

overs of only a few days, long minimum stop-

over statistics likely represent multiple birds

with unusually long stopovers. Such a scenar-

io would yield a large stopover estimate CV
and indicate large biological differences

among migrants at a given stopover site. Ex-

amining the 16 capture histories with >10 ob-

servations per parameter but with inestimable

parameters revealed that 3 histories had no re-

captures at all and 2 histories had only 2 re-

captures. Ten of the capture histories were

from three Nearctic-Nearctic migratory spe-

cies: five White-throated Sparrows ( Zonotri -

chia albicollis ), four Yellow-rumped Warblers

( Dendroica coronata ), and one Ruby-crowned

Kinglet ( Regulus calendula). Three of the oth-

er capture histories represented local breeding

species. All of these factors led us to believe

that the inestimability in these cases might

have been related to heterogeneous migration

behavior (either among individuals or subpop-

ulations).

Unlike what we found for parameter estim-

ability, there was no clear single factor ex-

plaining parameter inestimability in GOFtest-

ing. The discriminant function had low pre-

dictive power, with only a 67% chance of cor-

rectly predicting the outcome of the GOFtest,

again indicating the lack of strong factors in-

fluencing estimability in GOF. Biological fac-

tors related to heterogeneity of the captured

specimens (Pollock et al. 1990, Cooch and

White 2005) can easily lead to failures of

GOFtesting. Additionally, there may be sta-

tistical reasons for some of the observed fail-

ures in GOF testing. The GOF test is based

on a Monte-Carlo simulation test run at a 95%
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b

Mean

±
SE

of

the

total

stopover

estimate

(following

Schaub

et

al.

2001).

Estimates

in

boldface

had

a

CV

of

<50%.

CV

values

were

calculated

as

(SE/mean)

X

100.
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estimate
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Estimates

in
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of

<50%.

CV

values
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calculated

as

(SE/mean)

X

100.



524 THE WILSONJOURNALOF ORNITHOLOGY• Vol. 118, No. 4, December 2006

confidence level. It is worth noting that this

simulation test has a Type I error rate of 5%
(i.e., 5%chance of passing the GOFtest when
the model does not have adequate descriptive

power); however, the expected Type II error

rate (the chance that the model has failed GOF
when, in fact, it has adequate descriptive pow-
er) is not known, so we cannot even say with

certainty that the rate of GOFfailure is greater

than expected by chance. The contingency ta-

ble GOFtests implemented in U-CARE also

were severely limited by the sparseness of the

data (only 42% of estimable capture histories

could be tested using U-CARE).
For all capture histories used in this study,

it was necessary to reduce the number of pa-

rameters in the fitted model from the number
present in a fully time-dependent model to es-

timate all parameters successfully. Our results

indicated that MDCintervals from 3 to 7 days

were necessary to reduce the parameter count

in the models sufficiently to estimate all pa-

rameters. Parameter reduction was necessary

even for relatively large sample sizes (up to

595 specimens captured over 38 days). The
only current alternative to the MDCmethod
of reducing the number of parameters is pool-

ing the data —with its attendant problems of

possible parameter bias (Hargrove and Bor-

land 1994, Morris et al. 2005b). If pooling is

desirable in a given study, the MDCinterval

approach outlined here could be adapted to

determine the minimum pooling interval nec-

essary, based on parameter estimability. Re-

gardless of the method, successful use of

CMRmodels on banding data will often re-

quire some form of parameter reduction.

In our current work, the CV of total stop-

over duration measures the relative uncertain-

ty in the derived parameter of interest. The
CV includes both biological variability and

variability due to parameter estimation uncer-

tainty. Given our current available data, it is

somewhat difficult to determine the extent of

the biological contribution versus the sam-

pling-related contribution. Again, long mini-

mumstopover duration might indicate hetero-

geneity in the population. However, corre-

sponding increases in (1) the fraction of cap-

ture histories with a CV of <50% and (2) the

number of observations per parameter (Table

1) indicate some variation due to sample size.

Overall, more estimates of stopover duration

had a CV of <50% when using the stopover-

after statistic (28 capture histories) than when
using the total stopover statistic (23 capture

histories). Thus, in addition to the theoretical

points raised by Efford (2005), the statistic

based on his equation 5 resulted in more use-

able estimates of stopover duration based on
banding data.

Most of the capture histories that were es-

timable and had applicable models in this

study were collected during fall migration (Ta-

ble 2). Previous work on Appledore Island re-

sulted in higher rates of recapture and docu-

mented longer minimum stopover durations

during fall migration than in spring migration

(Morris et al. 1994, Morris and Glasgow
2001); this may have helped increase the num-
ber of observations per parameter available in

our study, which, in turn, may have resulted

in higher estimability. We did not see a spe-

cific pattern related to avian biology that ex-

plained the pattern of capture histories with

low CV values. Although most of the capture

histories with low CV values were obtained

during fall banding, this proportion was sim-

ilar to the proportion of fall capture histories

that had applicable models. The capture his-

tories with low CV values represented a wide

range of species (Table 2). Species that had

low CV values over multiple seasons included

those captured in high numbers, such as Red-

eyed Vireo ( Vireo olivaceus ), American Red-

start ( Setophaga ruticilla), and Northern Wa-
terthrush ( Seiurus noveboracensis).

Our results document the difficulty associ-

ated with parameter estimability when using

passerine banding data for capture-mark-re-

capture models of stopover duration. We are

not implying that these methods cannot or

should not be used on this type of data, but

rather they should be used cautiously, partic-

ularly when sample sizes are small. Efford

(2005) suggests using a constant c}> model for

populations with no consistent trend in cf),

which would reduce problems with estimabil-

ity. Researchers planning to use these methods

in migration banding studies should attempt

to maximize the number of captures and re-

captures during sampling periods to increase

the likelihood of parameter estimability.
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